Sho Morioka

Primary Appointment

Assistant Professor of Medicine, Nephrology

Education

  • PhD, Biology, Nagoya University

Research Interests

Role of Programmed Cell Death in Kidney Injury

Research Description

My primary research focus includes regulation of programmed cell death (e.g. necroptosis, pyroptosis and apoptosis). After a brief post-doctoral stint my graduate thesis lab to complete some projects and publications (Blood 2012, Journal of Cell Biology 2014, Oncogene 2016), I moved to the University of Virginia as a Senior Research Scientist, focusing on identifying the endogenous regulatory pathways that control clearance of apoptotic cells (also termed âefferocytosisâ). Removal of apoptotic cells by phagocytes occurs at a rate of nearly one million cells per second in the body and defective clearance leads to inflammatory diseases; yet, there are still significant knowledge gaps in how a phagocyte achieves rapid corpse uptake and how the phagocytosis handles this stress on various aspects of its physiology such as energy metabolism, pH regulation, or volume regulation. I discovered that a novel gene program, solute carrier (SLC) program, is important for successful uptake of apoptotic cells (Nature 2018, Immunity 2019 and Nature Cell Biology 2019). During acute kidney injuries (AKI), it is known that phagocyte actively removes apoptotic cells. My current research focuses on the effect of enhancing efferocytosis on resolution of AKI. I am elucidating molecular mechanisms that enable phagocytes to efficiently remove apoptotic cells under kidney injury, using uniquely created super-engulfer transgenic mouse model.

Selected Publications

2022

Morioka, S., Kajioka, D., Yamaoka, Y., Ellison, R. M., Tufan, T., Werkman, I. L., . . . Ravichandran, K. S. (2022). Chimeric efferocytic receptors improve apoptotic cell clearance and alleviate inflammation. CELL, 185(26), 4887-+. doi:10.1016/j.cell.2022.11.029

Raymond, M. H., Davidson, A. J., Shen, Y., Tudor, D. R., Lucas, C. D., Morioka, S., . . . Ravichandran, K. S. (2022). Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo. SCIENCE, 375(6585), 1182-+. doi:10.1126/science.abl4430

2021

Arai, Y., Yamaoka, Y., & Morioka, S. (2022). Sweeping Up Dying Cells during Tissue Injury. NEPHRON, 146(3), 249-252. doi:10.1159/000517731

2020

Medina, C. B., Mehrotra, P., Arandjelovic, S., Perrys, J. S. A., Guo, Y., Morioka, S., . . . Ravichandran, K. S. (2020). Metabolites released from apoptotic cells act as tissue messengers. NATURE, 580(7801), 130-+. doi:10.1038/s41586-020-2121-3

2019

Perry, J. S. A., Morioka, S., Medina, C. B., Etchegaray, J. I., Barron, B., Raymond, M. H., . . . Ravichandran, K. S. (2019). Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway. NATURE CELL BIOLOGY, 21(12), 1532-+. doi:10.1038/s41556-019-0431-1

Morioka, S., Maueroder, C., & Ravichandran, K. S. (2019). Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. IMMUNITY, 50(5), 1149-1162. doi:10.1016/j.immuni.2019.04.018

Rival, C. M., Xu, W., Shankman, L. S., Morioka, S., Arandjelovic, S., Lee, C. S., . . . Ravichandran, K. S. (2019). Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. NATURE COMMUNICATIONS, 10. doi:10.1038/s41467-019-12406-z

2018

Morioka, S., Perry, J. S. A., Raymond, M. H., Medina, C. B., Zhu, Y., Zhao, L., . . . Ravichandran, K. S. (2018). Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. NATURE, 563(7733), 714-718. doi:10.1038/s41586-018-0735-5

Michaels, A. D., Newhook, T. E., Adair, S. J., Morioka, S., Gaudreau, B. J., Nagdas, S., . . . Bauer, T. W. (2018). CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. CLINICAL CANCER RESEARCH, 24(6), 1415-1425. doi:10.1158/1078-0432.CCR-17-2283

2017

Sakamachi, Y., Morioka, S., Mihaly, S. R., Takaesu, G., Foley, J. F., Fessler, M. B., & Ninomiya-Tsuji, J. (2017). TAK1 regulates resident macrophages by protecting lysosomal integrity. CELL DEATH & DISEASE, 8. doi:10.1038/cddis.2017.23

Mihaly, S. R., Sakamachi, Y., Ninomiya-Tsuji, J., & Morioka, S. (2017). Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1 (vol 7, 2918, 2017). SCIENTIFIC REPORTS, 7. doi:10.1038/s41598-017-09609-z

Mihaly, S. R., Sakamachi, Y., Ninomiya-Tsuji, J., & Morioka, S. (2017). Noncanocial cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1. SCIENTIFIC REPORTS, 7. doi:10.1038/s41598-017-03112-1

2016

Sai, K., Morioka, S., Takaesu, G., Muthusamy, N., Ghashghaei, H. T., Hanafusa, H., . . . Ninomiya-Tsuji, J. (2016). TAK1 determines susceptibility to endoplasmic reticulum stress and leptin resistance in the hypothalamus. JOURNAL OF CELL SCIENCE, 129(9), 1855-1865. doi:10.1242/jcs.180505

Morioka, S., Sai, K., Omori, E., Ikeda, Y., Matsumoto, K., & Ninomiya-Tsuji, J. (2016). TAK1 regulates hepatic lipid homeostasis through SREBP. ONCOGENE, 35(29), 3829-3838. doi:10.1038/onc.2015.453

2014

Ikeda, Y., Morioka, S., Matsumoto, K., & Ninomiya-Tsuji, J. (2014). TAK1 Binding Protein 2 Is Essential for Liver Protection from Stressors. PLOS ONE, 9(2). doi:10.1371/journal.pone.0088037

Morioka, S., Broglie, P., Omori, E., Ikeda, Y., Takaesu, G., Matsumoto, K., & Ninomiya-Tsuji, J. (2014). TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. JOURNAL OF CELL BIOLOGY, 204(4), 607-623. doi:10.1083/jcb.201305070

Mihaly, S. R., Morioka, S., Ninomiya-Tsuji, J., & Takaesu, G. (2014). Activated Macrophage Survival Is Coordinated by TAK1 Binding Proteins. PLOS ONE, 9(4). doi:10.1371/journal.pone.0094982

Mihaly, S. R., Ninomiya-Tsuji, J., & Morioka, S. (2014). TAK1 control of cell death. CELL DEATH AND DIFFERENTIATION, 21(11), 1667-1676. doi:10.1038/cdd.2014.123

2012

Morioka, S., Inagaki, M., Komatsu, Y., Mishina, Y., Matsumoto, K., & Ninomiya-Tsuji, J. (2012). TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. BLOOD, 120(18), 3846-3857. doi:10.1182/blood-2012-03-416198