Rebecca Pompano


Primary Appointment

Assistant Professor, Chemistry


  • BS, University of Richmond
  • PhD, University of Chicago
  • Postdoc, University of Chicago

Research Disciplines

Biotechnology, Cancer Biology, Experimental Pathology, Immunology, Metabolism, Microbiology, Molecular Pharmacology, Neuroimmunology, Translational Science

Research Interests

Bioanalytical tools for inflammatory disease

Research Description

Our lab develops methods based on microfluidic culture systems, bioanalytical techniques, and spatially resolved simulations to quantify the spatiotemporal dynamics of the inflammatory cascade and develop targeted therapies. This work is part of a broad interest in the dynamics of complex biological systems. Specifically, we study the kinetics of immunity and inflammation, and we develop chemically targeted methods to control these processes in the context of vaccination, autoimmunity, and chronic inflammatory disease.
The immune system is a fascinating topic for physical scientists to study, and one where novel analytical tools can make a significant impact. The system consists of a highly structured network whose components include a set of specialized cell types and secreted signals, which organize themselves into dynamic spatial arrangements. These components interact with all of the characteristics of mathematical complexity, including nonlinearity, thresholds for activation, and multiple length scales, and they exhibit emergent behaviors that are difficult to predict from knowledge of the individual components. As a result of this complexity, protective immune responses against invading pathogens and injected vaccines are only a small perturbation away from the non-productive inflammation that characterizes autoimmunity, heart disease, Alzheimerâs disease, and solid tumors. Despite a wealth of information about individual proteins and cells in the immune system, it is challenging to predict the effects of a given stimulation of the immune system. One reason is that chemical stimulation of individual clusters of cells is still difficult to achieve in vitro or in vivo. Spatially resolved readout of secreted molecules is also difficult, unless the molecules can be fluorescently labeled. Without such tools, it remains unclear how to stop an autoimmune disease without suppressing the entire immune system, or how to design potent vaccines that work for any disease target without unwanted inflammatory side effects.
We are developing new methods to study the kinetics and the spatial behavior of cells and secreted signals during immune responses. For example, we are designing microfluidic devices to test the effects of spatial distribution and local delivery of signals. We also are developing new ways to measure the secretions of cells in living tissues with high spatial and temporal resolution. To do so, we combine activities from a variety of disciplines, including microfabrication and device design; quantitative analysis of chemical and biochemical signals using immunoassays, HPLC, mass spectrometry, and fluorescence microscopy (widefield and confocal); live cell and tissue imaging using samples from mouse models of health and disease; and, finally, spatially-resolved time-dependent numerical simulations. Eventually, we will use the information from these experiments to design spatially targeted nanoparticles that abrogate inflammation. Our goal is that the methods we develop will enable experiments that contribute to the fundamental understanding of both immunity and complex chemical kinetics, and that they will help guide the design of highly targeted vaccines and immunotherapies.


  • Biotechnology Training Grant
  • Interdisciplinary Training Program in Immunology
  • Training in Molecular Biophysics

Selected Publications

Ross AE, Pompano RR, Diffusion of cytokines in live lymph node tissue using microfluidic integrated optical imaging., 2018; Analytica chimica acta. 1000() 205-213. PMID: 29289312

Catterton MA, Dunn AF, Pompano RR, User-defined local stimulation of live tissue through a movable microfluidic port., 2018; Lab on a chip. 18(14) 2003-2012. PMID: 29904762 | PMCID: PMC6039252

Pompano RR, Chiang AH, Kastrup CJ, Ismagilov RF, Conceptual and Experimental Tools to Understand Spatial Effects and Transport Phenomena in Nonlinear Biochemical Networks Illustrated with Patchy Switching., 2017; Annual review of biochemistry. 86() 333-356. PMID: 28654324

Ross AE, Belanger MC, Woodroof JF, Pompano RR, Spatially resolved microfluidic stimulation of lymphoid tissue ex vivo., 2016; The Analyst. () . PMID: 27900374

Pompano RR, Chen J, Verbus EA, Han H, Fridman A, McNeely T, Collier JH, Chong AS, Titrating T-cell epitopes within self-assembled vaccines optimizes CD4+ helper T cell and antibody outputs., 2014; Advanced healthcare materials. 3(11) 1898-908. PMID: 24923735 | PMCID: PMC4227912

Chen J, Pompano RR, Santiago FW, Maillat L, Sciammas R, Sun T, Han H, Topham DJ, Chong AS, Collier JH, The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation., 2013; Biomaterials. 34(34) 8776-85. PMID: 23953841 | PMCID: PMC3814015

Pompano RR, Liu W, Du W, Ismagilov RF, Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions., 2011; Annual review of analytical chemistry (Palo Alto, Calif.). 4() 59-81. PMID: 21370983