Rebecca Pompano


Primary Appointment

Associate Professor, Chemistry


  • BS, University of Richmond
  • PhD, University of Chicago
  • Postdoc, University of Chicago

Research Disciplines

Biotechnology, Cancer Biology, Experimental Pathology, Immunology, Metabolism, Microbiology, Molecular Pharmacology, Neuroimmunology, Translational Science

Research Interests

Bioanalytical tools for inflammatory disease

Research Description

Our lab develops methods based on microfluidic culture systems, bioanalytical techniques, and spatially resolved simulations to quantify the spatiotemporal dynamics of the inflammatory cascade and develop targeted therapies. This work is part of a broad interest in the dynamics of complex biological systems. Specifically, we study the kinetics of immunity and inflammation, and we develop chemically targeted methods to control these processes in the context of vaccination, autoimmunity, and chronic inflammatory disease.
The immune system is a fascinating topic for physical scientists to study, and one where novel analytical tools can make a significant impact. The system consists of a highly structured network whose components include a set of specialized cell types and secreted signals, which organize themselves into dynamic spatial arrangements. These components interact with all of the characteristics of mathematical complexity, including nonlinearity, thresholds for activation, and multiple length scales, and they exhibit emergent behaviors that are difficult to predict from knowledge of the individual components. As a result of this complexity, protective immune responses against invading pathogens and injected vaccines are only a small perturbation away from the non-productive inflammation that characterizes autoimmunity, heart disease, Alzheimerâs disease, and solid tumors. Despite a wealth of information about individual proteins and cells in the immune system, it is challenging to predict the effects of a given stimulation of the immune system. One reason is that chemical stimulation of individual clusters of cells is still difficult to achieve in vitro or in vivo. Spatially resolved readout of secreted molecules is also difficult, unless the molecules can be fluorescently labeled. Without such tools, it remains unclear how to stop an autoimmune disease without suppressing the entire immune system, or how to design potent vaccines that work for any disease target without unwanted inflammatory side effects.
We are developing new methods to study the kinetics and the spatial behavior of cells and secreted signals during immune responses. For example, we are designing microfluidic devices to test the effects of spatial distribution and local delivery of signals. We also are developing new ways to measure the secretions of cells in living tissues with high spatial and temporal resolution. To do so, we combine activities from a variety of disciplines, including microfabrication and device design; quantitative analysis of chemical and biochemical signals using immunoassays, HPLC, mass spectrometry, and fluorescence microscopy (widefield and confocal); live cell and tissue imaging using samples from mouse models of health and disease; and, finally, spatially-resolved time-dependent numerical simulations. Eventually, we will use the information from these experiments to design spatially targeted nanoparticles that abrogate inflammation. Our goal is that the methods we develop will enable experiments that contribute to the fundamental understanding of both immunity and complex chemical kinetics, and that they will help guide the design of highly targeted vaccines and immunotherapies.


  • Biotechnology Training Grant
  • Interdisciplinary Training Program in Immunology
  • Training in Molecular Biophysics

Selected Publications


Musgrove, H. B., Catterton, M. A., & Pompano, R. R. (2022). Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. ANALYTICA CHIMICA ACTA, 1209. doi:10.1016/j.aca.2022.339842


Belanger, M. C., Zhuang, M., Ball, A. G., Richey, K. H., DeRosa, C. A., Fraser, C. L., & Pompano, R. R. (2020). Labelling primary immune cells using bright blue fluorescent nanoparticles. BIOMATERIALS SCIENCE, 8(7), 1897-1909. doi:10.1039/c9bm01572h


Kinman, A. W. L., & Pompano, R. R. (2019). Optimization of Enzymatic Antibody Fragmentation for Yield, Efficiency, and Binding Affinity. BIOCONJUGATE CHEMISTRY, 30(3), 800-807. doi:10.1021/acs.bioconjchem.8b00912

Shim, S., Belanger, M. C., Harris, A. R., Munson, J. M., & Pompano, R. R. (2019). Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor-lymph node interaction. LAB ON A CHIP, 19(6), 1013-1026. doi:10.1039/c8lc00957k


Groff, B. D., Kinman, A. W. L., Woodroof, J. F., & Pompano, R. R. (2019). Immunofluorescence staining of live lymph node tissue slices. JOURNAL OF IMMUNOLOGICAL METHODS, 464, 119-125. doi:10.1016/j.jim.2018.10.010

Catterton, M. A., Dunn, A. F., & Pompano, R. R. (2018). User-defined local stimulation of live tissue through a movable microfluidic port. LAB ON A CHIP, 18(14), 2003-2012. doi:10.1039/c8lc00204e


Si, Y., Wen, Y., Chen, J., Pompano, R. R., Han, H., Collier, J. H., & Chong, A. S. (2018). MyD88 in antigen-presenting cells is not required for CD4+ T-cell responses during peptide nanofiber vaccination. MEDCHEMCOMM, 9(1), 138-148. doi:10.1039/c7md00367f

Ross, A. E., & Pompano, R. R. (2018). Diffusion of cytokines in live lymph node tissue using microfluidic integrated optical imaging. ANALYTICA CHIMICA ACTA, 1000, 205-213. doi:10.1016/j.aca.2017.11.048

Mora-Solano, C., Wen, Y., Han, H., Chen, J., Chong, A. S., Miller, M. L., . . . Collier, J. H. (2017). Active immunotherapy for TNF-mediated inflammation using self-assembled peptide nanofibers. BIOMATERIALS, 149, 1-11. doi:10.1016/j.biomaterials.2017.09.031

Pompano, R. R., Chiang, A. H., Kastrup, C. J., & Ismagilov, R. F. (2017). Conceptual and Experimental Tools to Understand Spatial Effects and Transport Phenomena in Nonlinear Biochemical Networks Illustrated with Patchy Switching. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 86, 86, 333-356. doi:10.1146/annurev-biochem-060815-014207


Ross, A. E., Belanger, M. C., Woodroof, J. F., & Pompano, R. R. (2017). Spatially resolved microfluidic stimulation of lymphoid tissue ex vivo. ANALYST, 142(4), 649-659. doi:10.1039/c6an02042a


Sun, T., Han, H., Hudalla, G. A., Wen, Y., Pompano, R. R., & Collier, J. H. (2016). Thermal stability of self-assembled peptide vaccine materials. ACTA BIOMATERIALIA, 30, 62-71. doi:10.1016/j.actbio.2015.11.019


Pompano, R. R., Chen, J., Verbus, E. A., Han, H., Fridman, A., McNeely, T., . . . Chong, A. S. (2014). Titrating T-Cell Epitopes within Self-Assembled Vaccines Optimizes CD4+Helper T Cell and Antibody Outputs. ADVANCED HEALTHCARE MATERIALS, 3(11), 1898-1908. doi:10.1002/adhm.201400137


Chen, J., Pompano, R. R., Santiago, F. W., Maillat, L., Sciammas, R., Sun, T., . . . Collier, J. H. (2013). The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. BIOMATERIALS, 34(34), 8776-8785. doi:10.1016/j.biomaterials.2013.07.063


Pompano, R. R., Platt, C. E., Karymov, M. A., & Ismagilov, R. F. (2012). Control of Initiation, Rate, and Routing of Spontaneous Capillary-Driven Flow of Liquid Droplets through Microfluidic Channels on SlipChip. LANGMUIR, 28(3), 1931-1941. doi:10.1021/la204399m


Nichols, K. P., Pompano, R. R., Li, L., Gelis, A. V., & Ismagilov, R. F. (2011). Toward Mechanistic Understanding of Nuclear Reprocessing Chemistries by Quantifying Lanthanide Solvent Extraction Kinetics via Microfluidics with Constant Interfacial Area and Rapid Mixing. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(39), 15721-15729. doi:10.1021/ja206020u

Pompano, R. R., Liu, W., Du, W., & Ismagilov, R. F. (2011). Microfluidics Using Spatially Defined Arrays of Droplets in One, Two, and Three Dimensions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 4, 4, 59-81. doi:10.1146/annurev.anchem.012809.102303